Chemistry

These free kids Chemistry experiments are simple and can be performed with general household items.

Explosive Cream Container

If you thought vinegar and bicarb were only good for making messy, oozy volcanoes, think again! Turn an empty cream container into an exciting, explosive rocket with this classic acid/base reaction.

Gooey Slime

Get Totally Messy With Gooey SLIME! Make simple cornflour slime Suitable for kids aged 4+You just need two main ingredients for this slime - too easy! You Need: CornflourWaterFood ColouringMixing Bowl and Spoon What to do: Tip some cornflour into a mixing bowl.Pour in water, a little at a time,...

Super Cold Bag

The Super Cold Bag Watch a zip lock bag blow up and become super-cold from a chemical reaction. Youll love this one! Suitable for kids aged 4+ You Need: Citric AcidBaking SodaTap WaterZip lock bag (15cm x 10cm)Measuring cupPlastic spoonsTeaspoon Perform this experiment over a kitchen sink. There...

Ice Cream In A Bag

Ice Cream In A Bag Make delicious ice cream in a zip lock bag using just a few simple ingredients. Suitable for kids aged 6+ You Need: 1 tablespoon of sugar cup of milk teaspoon of vanilla essence 6 tablespoons of rock salt (or use regular table salt as a substitute) 2 cups of ice 4 litre zip lock...

Colourful Chemicals

Colourful Chemicals Use cabbage water to change kitchen chemicals different colours. Suitable for kids aged 4+ with parental supervisionCAUTIONThe cabbage water must strictly be prepared by an adult as it involves the use of boiling water. You Need: Small amount of red cabbage Pot of boiling...

Grow Crystals

Grow Crystals Grow your own crystal icicle using baking soda and water in about a week Suitable for kids aged 5+ with parental supervision You Need: Two glass jarsTwo paper clips A length of thick woolen threadBaking sodaShallow dishSpoonVery warm water What to do: Fill two jars with very warm...

Popping Test Tube

Popping Test Tube How many times can you make the stopper pop from the test tube? Suitable for kids aged 7+, with adult supervisionCAUTION The plastic stopper in the test tube is a projectile and must be aimed away from people and faces.The alka seltzer tablet is a medicine. DO NOT EAT. Seek medical...

Lets Get Fizzy

Make fizz and foam using a chemical reaction Compare two baking soda and vinegar chemical reactions (one with detergent, one without), and watch for salt crystal formation. Suitable for kids aged 4+NOTE These reactions can overflow to make a little bit of a wet mess! But that's part of the fun! You...

Fizzy Sherbet Treat

Make a fizzy sherbet treat. So delicious, so easy! Suitable for kids aged 4+ You Need: 1 teasppon of citric acid 1 teaspoon of baking soda 3 tablespoons of icing sugar3 tablespoons of jelly crystals What to do: Mix all the ingredients in a bowl and stir. Too easy. Taste and adjust as needed....

Invisible Ink

Invisible Ink No Secret Agent can go without invisible ink. This is a simple invisible ink recipe using lemons. Suitable for kids aged 5+ (with adult supervision) You Need: Lemon Juice Heat Source: direct sunlight or a light globe. Use an iron, candle or oven as a last resort under strict adult...

Cool Coloured Milk

Cool Coloured Milk Create an explosion of colour in a dish of milk! Suitable for kids aged 3+ with parental supervision You Need: MilkDinner plate Red, yellow, green and blue food colouringDishwashing liquidCotton swab What to do: Pour enough milk onto a plate to cover the bottom. Allow the...

Nappy Bag

Nappy Bag How much water can a disposable nappy soak up? Find out with this experiment, and learn about the amazing world of superabsorbent polymers at the same time! Suitable for kids aged 4+ You Need: Zip lock bagSmall piece of a disposal nappy (cut about a 3x3cm square) Water Food colouring...

Rubber Egg

Rubber Egg Soak a hard-boiled egg in vinegar to transform it into a rubbery egg that can bounce like a ball Suitable for kids aged 4+ with parental supervision You Need: Hard-boiled egg Glass or jar, big enough to hold the egg Vinegar What to do: Place the hard-boiled egg in the glass...

Disappearing Ghost Crystals

Disappearing Ghost Crystals Watch these hard crystals swell and grow into jelly-like pieces with water. Then amaze your friends when they disappear in water, or add some food colouring for cool effects. Welcome to the amazing world of superabsorbent polyemers! Suitable for kids aged 5+ with parental...

Lava Lamp

Make your own hypnotic lava lamp with oil and water and a secret ingredient that makes it fizz and bubble. Suitable for kids aged 5+ with parental supervision. CAUTIONRemember Alka-Seltzer tablets are a medicine, do not ingest. Read the packet instructions for more information. You Need: An empty...

Ink Chromatography

Ink Chromatography Is black really black? Separate out all the colours that make up a black felt pen using a special technique called chromatography. Suitable for kids aged 7+ You Need: Filter or blotting paper (a coffee filter works well) cut into strips (approx. 1.5cm wide and just short...

Gas Candle Detection

Gas Flame Detection Detect Carbon Dioxide gas with a candle flame. Will the flame get smaller, bigger, snuff out, change colour? How the flame behaves tells you the type of invisible gas present. Suitable for kids aged 10+ with parental supervisionCAUTIONThis experiment requires use of an open...

Make A Gelatin Disc

Make A Gelatin Disc Best known for making jelly, gelatin is a fascinating substance that is used as a gelling agent not just in food, but in many other things. Heres how to make your very own gelatin product that can be used in further experiments or in some very cool artwork. Suitable for kids aged...

Chocolate Leaves

Chocolate leaves Make some stunning chocolate leaves as a novel and delicious way to learn about the changing states of matter. Suitable for kids aged 5+ with parental supervisionCAUTIONThis science activity involves the use of boiling water. Hot water must only be handled by an adult. You Need:...

Glowing Water

Glowing Water Make water glow eerily under a black light using the fluorescent dye found in highlighters. Glowing water can create some exciting special effects when used in fountains, or use it to transfer glow to bubbles, ice and slime. Suitable for kids aged 8 + with parental supervisionCAUTIONThis...

Elephant Toothpaste

This COOL chemical reaction spews froth and foam everywhere. Just like a gigantic tube of toothpaste fit for an elephant. Suitable for kids aged 5+ with parental supervision. You Need: An empty soft drink bottle (600mL size works best) cup of 6% hydrogen peroxide solution (purchased from a hairdresser/beauty...

Chip Bag Shrinkies

Chip Bag Shrinkies Shrink your chip bags to less than half their size, then use them as a bookmark or keychain. Polymer chemistry fun! Suitable for kids aged 10+ with parental supervisionCAUTIONThis activity strictly requires supervision by an adult. It involves the use of a hot oven and handling...

Milk Plastic

Milk Plastic Make plastic from milk easily using vinegar. Then mould your milk plastic into fun shapes! Suitable for kids aged 6+ with parental supervisionCAUTIONThis activity involves heating milk in a microwave or on a stove top, and requires adult supervision. You Need: One cup of milk...

Grow Your Own Crystal Snow Flake

Use borax solution to easily grow a delicate crystal snowflake Grow a crystal snowflake as a pretty Christmas decoration... A great hands-on chemistry project for the festive season. Suitable for kids aged 4+ You Need: A Wide Mouth JarPipe Cleaner (white, silver or blue are good choices)Borax...

Magnetic Slime

Get Totally Messy With Gooey, Magnetic SLIME! Why make simple slime when you can make super gooey and magnetic slime?? Suitable for kids aged 5+You just need three main ingredients for this slime - too easy! You Need: PVA Glue (Elmers glue works best) Liquid starch (Borax Solution...

Waterproof Sand

Play with magic sand that never gets wet! Why play with ordinary sand when you can make hydrophobic sand that is literally scared of water? Suitable for kids aged 5+Two ingredients = Too easy! You Need: Regular or coloured sand Waterproofing Spray (eg. Scotchgard or other fabric protector)Baking...

Make your own Bath bomb

Bring chemistry into the bathroom. Make bath time fun! Make your own bath bomb from household ingredients and marvel over the fizzy, colourful chemistry happening around you. Suitable for kids aged 6+ You Need: Food colouringSweet Almond oil (use different...
  1. Explosive Cream Container

    Explosive Cream Container

    If you thought vinegar and bicarb were only good for making messy, oozy volcanoes, think again! Turn an empty cream container into an exciting, explosive rocket with this classic acid/base reaction.

    Suitable for ages 13 +, best used as a demonstration because of the speed and danger of the projectile

    You Need:

    • ¼ cup of vinegar
    • 600ml empty, clean cream container
    • 1 tablespoon of bicarb powder

    What to do:

    1. Add approximately ¼ cup of vinegar (acid) to a 600ml empty, clean cream container.
    2. Then, add one heaped tablespoon of bicarb (base).
    3. Quickly push the cream lid on, and point the container away from you face, and other people and faces. You should be holding the cream container with the lid on-top directed away from faces.
    4. The lid ‘blast-off should happen pretty quickly. If it doesn’t check the gas and pressure is not escaping from the seal around the lid. To slow down the reaction, wrap the bicarb powder in a small piece of paper towel before placing in the vinegar.
    5. You may even want to decorate the cream container as a rocket.

    Why is it so?

    As more and more carbon dioxide is released by the acid/base reaction, pressure builds and builds until……Bam! Lift Off!
    When you mix vinegar (acid) with bicarb powder (base) there are a lot of bubbles and foam filled with carbon dioxide gas released by the acid/based reaction. Initially, the reaction makes carbonic acid which is unstable.
    It quickly breaks down into carbon dioxide and water. The gas then rapidly leaves the water creating foam and bubbles along the way.
    When you close the cream container with the lid, carbon dioxide gas is trapped in the container.
    This causes a rapid increase of pressure inside the container, and eventually the lid can no longer contain the gases – BLAST OFF! – the gas and lid explode off the container.
    Read more »
  2. Rubber Egg

    Rubber Egg

    Rubber Egg

    Soak a hard-boiled egg in vinegar to transform it into a rubbery egg that can bounce like a ball

    Suitable for kids aged 4+ with parental supervision

    You Need:
    • Hard-boiled egg
    • Glass or jar, big enough to hold the egg
    • Vinegar
    What to do:
    1. Place the hard-boiled egg in the glass or jar.
    2. Pour enough vinegar into the jar to completely cover the egg. Look closely, what do you see? Can you see some tiny bubbles start to form on the shell? Why?
    3. When the shell has completely dissolved, after about 3 days or so, remove the egg from the jar and gently rinse it with tap water. How does it feel?
    4. Bounce your new rubber egg on a hard surface. How high does it bounce?
    5. As a further experiment, try soaking a raw egg in vinegar for 3-4 days, how does the raw egg compare to the hard-boiled egg soaked in vinegar? Gently squeeze the egg. How does it feel? We dont recommend you bounce this egg.

    Why is it so?

    Vinegar is a weak acid (acetic acid) and reacts with the calcium carbonate eggshell to produce carbon dioxide gas (hence the bubbles that form). Eventually the calcium in the eggshells is completely broken down by the acid and become a soft rubbery texture.

    Read more »
  3. Disappearing Ghost Crystals

    Disappearing Ghost Crystals

    Disappearing Ghost Crystals

    Watch these hard crystals swell and grow into jelly-like pieces with water. Then amaze your friends when they disappear in water, or add some food colouring for cool effects. Welcome to the amazing world of superabsorbent polyemers!

    Suitable for kids aged 5+ with parental supervision.

    CAUTION
    Ghost crystals are generally considered non-toxic and are safe for use around young children unless ingested. If ghost crystals are swallowed do not give liquids. Seek medical advice.

    You Need:
    • Water absorbing crystals (available from your local nursery or garden supply centre)
    • Transparent cup, beaker or glass
    • Water
    • Food colouring (optional)
    What to do:
    1. Sprinkle a small amount of water absorbing crystals into a glass. You dont need many a flat teaspoon is plenty.
    2. Half fill the glass with water.
    3. Now watch. Your crystals will start grow as they absorb water. After a minute or so you will start to notice a difference in their size. Continue to monitor their growth at regular intervals. After 2 hours they will have fully grown.
    4. Take out a couple of crystals and investigate the change in their texture (now gel-like) and size.
    5. Fill the cup with water and watch the ghost crystals magically disappear. You may need to tip the crystals into a larger transparent glass to see them disappear completely.
    6. Drain the water and watch the crystals mysteriously reappear.
    7. Drain most of the water and place a few crystals on a paper towel. Leave them in the sun and monitor their decrease in size at regular intervals. They are re-usable!
    8. Try sprinkling some salt on the jelly-like crystals. What happens?
    9. Try growing some crystals in water with food colouring for a colourful effect.

    Why is it so?

    Ghost crystals are made from a cross-linked polyacrylamide polymer allowing them to absorb so much water (95%) that they have the exact refractivity (how much light is bent) as water, and thus seem to disappear completely in water. They grow up to 200 x their original size in water. Ghost crystals have many real life applications. They are used in agriculture to retain water in soil, in horticulture and mining. They are also similar to the super absorbent polymer used in baby nappies.

    Read more »
  4. Lava Lamp

    Lava Lamp

    Make your own hypnotic lava lamp with oil and water and a secret ingredient that makes it fizz and bubble.

    Suitable for kids aged 5+ with parental supervision.

    CAUTION
    Remember Alka-Seltzer tablets are a medicine, do not ingest. Read the packet instructions for more information.

    You Need:
    • An empty soft drink bottle with cap, or clear jar/container with a lid
    • Vegetable oil
    • Alka-Seltzer tablets (from the supermarket)
    • Food colouring
    • Water
    What to do:
    1. Fill the bottle (or container) about full with vegetable oil.
    2. Carefully fill the rest of the bottle/container with water (nearly to the top but not overflowing). Why doesnt the water mix with the oil layer?
    3. Add about 10-15 drops of food colouring so the water is a nice deep vibrant colour. Why does the dye only colour the water?
    4. Break an Alka-Seltzer tablet into 6-8 pieces.
    5. Drop one of the Alka-Seltzer pieces into the bottle/container. What happens? When the fizzing stops add another piece. Then another its just like a lava lamp! Cool man!
    6. When you have finished with the Alka-Seltzer tablets and the bubbling has stopped, put the lid on the bottle/container and tip it back and forth. Watch the wave and blobs develop and combine. Shake the bottle/container. What happens? Does the water and oil stay mixed?

    Why is it so?

    Oil and water dont mix the water molecules (highly charged hydrophilic compounds) do not like the oil molecules (hydrophobic long chains of carbon). Even when shaken, the oil breaks into smaller droplets so it might appear mixed, but isnt. When left undisturbed, the oil and water will eventually separate into distinct layers. Food dye only mixes with the water.

    Water is heavier (more dense) than oil, so when the water is added to the bottle/container it sinks to the bottom.

    The Alka-Seltzer tablets react with the water to make bubbles of carbon dioxide gas. These gas bubbles attach themselves to the blobs of coloured water taking them to the surface through the oil. When the bubbles pop at the surface, the blob of coloured water sinks back down to the bottom. Definitely a groovy lava lamp!

    Read more »
  5. Ink Chromatography

    Ink Chromatography

    Ink Chromatography Is black really black?

    Separate out all the colours that make up a black felt pen using a special technique called chromatography.

    Suitable for kids aged 7+

    You Need:
    • Filter or blotting paper (a coffee filter works well) cut into strips (approx. 1.5cm wide and just short of the length of the cup)
    • Transparent glass or plastic cup
    • Icy pole stick
    • 2 x black felt pens
    • Water
    What to do:
    1. Take a pen and draw a horizontal line near the bottom of two strips of filter paper. Use a different pen for each strip. You can test more than two pens on other strips if you like.
    2. Tape the strips side by side to an icy pole stick so they are hanging vertically (like clothes on a clothes line).
    3. Suspend the icy pole stick across the top of a cup/glass so that the paper strips hang into the cup/glass.
    4. Being careful not to wet the paper strips, pour enough water into the cup/glass so the very bottom of the paper strips (but not the ink line) hang in the water. < li>
    5. Now watch and wait. When the water has just about reached the top, remove the paper strips and leave to dry. < li>

    Why is it so?

    The water moves up the filter paper (against the force of gravity) through capillary action due to the tiny pores or tubes in the paper. The ink in black felt pens is a mixture of different coloured chemicals. As the water moves over the black pen lines some chemicals dissolve easier in water and spread up the blotting paper, creating a unique pattern. This is a good way to analyse the ink in a mystery note and find out which pen (and who wrote the note) by comparing the resultant colour patterns. It is an example of a science lab technique called chromatography, which is used to separate the components of a mixture. Although there are various chromatography methods, it always involves passing a mixture in a moving phase through a still or stationary phase.

    Read more »
  6. Gas Candle Detection

    Gas Candle Detection

    Gas Flame Detection

    Detect Carbon Dioxide gas with a candle flame. Will the flame get smaller, bigger, snuff out, change colour? How the flame behaves tells you the type of invisible gas present.

    Suitable for kids aged 10+ with parental supervision

    CAUTIONThis experiment requires use of an open candle flame. Please exercise caution, and only perform under adult supervision. It also requires the use of a knife to cut a candle. This task should only be undertaken by an adult.

    You Need:
    • 2-3cm candle piece with wick (have an adult cut the piece using a knife from an ordinary household candle)
    • Aluminium foil patty pan
    • Piece of wire about 40cm in length
    • Chop Stick or similar
    • Scissors
    • Glass jar, preferably with a wide mouth
    • Vinegar
    • Baking soda
    • Matches
    • Small measuring cup to measure 30ml
    • Teaspoon
    What to do:
    1. First, prepare the candle holder. Cut a foil patty pan down its side and along its base to the centre point with scissors. Place the candle on the pan, and slide the cut sides over each other to adjust the pan size and have it fit snuggly around the candle.
    2. Make a loop at one end of the wire and place it over the candle and patty pan. Twist it on itself to secure the candle and patty pan tightly (a bit like a lasso).
    3. Twist the other end of the wire around the end of the chop stick a few times. The holder should now look a bit like a fishing rod. With the chop stick as the handle, the wire as the line and the candle as the bait.
    4. Measure out 30mls of vinegar and pour it into the glass jar.
    5. Add one heaped spoon of baking soda. Watch it fizz and bubble. The fizz and bubbles are caused by a gas produced when these two chemicals are mixed (chemical reaction), but we dont know what this invisible gas is.
    6. To find out, have an adult light the candle in the candle holder. You can then lower the lit candle into the jar. How does the flame respond in the presence of this new gas? Some possibilities to think about: oxygen will make the flame grow bigger, nitrogen will result in no change to the flame (approx. 78% of our air is composed of nitrogen), argon will cause the flame to shrink, carbon dioxide will snuff out the flame. So, what gas is made when vinegar and baking soda are mixed?
    7. Have a few tries at lowering the flame into the jar (re-lighting if necessary). A bit of a challenge: can you lower the candle in and pull it out before the flame snuffs out? Eventually the flame stays alight when you lower it into the jar. Why?

    Why is it so?

    When vinegar and baking soda are mixed a chemical reaction occurs that results in carbon dioxide gas formation. The fizz and bubbles tells you its a gas, but how can you demonstrate that it is, in fact, carbon dioxide gas? Its interesting to think about how scientists work with matter thats invisible like a gas, and this is a good activity to show one way of working and identifying gasses. How the flame responds will indicate the type of gas made. Think about the possibilities - oxygen, argon, nitrogen, carbon dioxide all gasses found in air. The flame snuffs out telling you that indeed the gas in the jar produced by mixing vinegar and baking soda is carbon dioxide. After a while, the flame stops going out because the chemical reaction has finished and no more carbon dioxide gas is being made to put out the candle.

    Read more »
  7. Make A Gelatin Disc

    Make A Gelatin Disc

    Make A Gelatin Disc

    Best known for making jelly, gelatin is a fascinating substance that is used as a gelling agent not just in food, but in many other things. Heres how to make your very own gelatin product that can be used in further experiments or in some very cool artwork.

    Suitable for kids aged 5 +

    CAUTION This experiment requires the use of a small amount of hot water. This should be handled with care under the supervision of an adult.
    You Need:
    • Small round mould (the underside of a jar lid works well)
    • 3 x teaspoons of gelatin
    • Cup or glass
    • Spoon or icy pole stick
    • Food dye
    • 40mls of hot water
    What to do:
    1. Squeeze a drop or two of coloured food dye into the hot water and mix with a spoon or icy pole stick.
    2. Place 3 teaspoons of gelatin in a cup or glass.
    3. Pour the coloured hot water into the cup with gelatin and mix gently with the icy pole stick or spoon.
    4. Before the gelatin-water mix cools down and starts to set, you need to pour the mixture into your mould. Pour a thin layer into the mould, trying to avoid bubbles and mess.
    5. Leave it to set. It will take a fairly short time for the gelatin to set like jelly (as soon as the mixture is cool), but will take 3 to 5 days to dry out completely and become a hard gelatin disc.
    6. Once it is hard and dry, remove the gelatin disc from the mould.
    7. You can continue to experiment with your gelatin disc. Try making 4 or so discs and placing them in various locations for a couple of weeks (freezer, bathroom or other humid environment, bury underground, hot dry spot). Or you may like to use your discs in some very cool art work mobiles, or as coloured film in some homemade binoculars/glasses.

    Why is it so?

    Gelatin is a colourless, flavourless solid substance derived from the collagen inside animals skin and bones. Commonly used as a gelling agent in food, it also has lots of other uses. Gelatin is found in nearly all photographic films and papers, it makes up the shells of pharmaceutical capsules to make them easier to swallow, and believe it or not, even synchronized swimmers use gelatin to hold their hair in place during their routines because it will not dissolve in cold water. The gelatin discs in this experiment should grow mould on them when placed for any length of time in a humid environment like a bathroom. They grow mould because gelatin is biodegradable and will rot away in soil becoming food for plants and mini beasts. The biodegradable properties of gelatin are useful to explore during a sustainability and environmental unit.

    Read more »
  8. Chocolate Leaves

    Chocolate Leaves

    Chocolate leaves

    Make some stunning chocolate leaves as a novel and delicious way to learn about the changing states of matter.

    Suitable for kids aged 5+ with parental supervision

    CAUTIONThis science activity involves the use of boiling water. Hot water must only be handled by an adult.

    You Need:
    • Metal or heat resistant bowl
    • Saucepan
    • Wooden spoon or similar
    • Chocolate
    • Large non-poisonous leaves (rose, ivy, mample or lemon leaves work well)
    • Boiling water
    • Clean paintbrush
    What to do:
    1. Wash the leaves and dry them gently, careful not to damage or bruise them.
    2. Have an adult pour some boiling water into the saucepan.
    3. Ask an adult to carefully place the bowl inside the pan (be sure not to get any hot water in the bowl).
    4. Break the chocolate into the bowl. How does the chocolate behave in the heated bowl? Stir the chocolate and watch it melt and change from a solid state to a thick (or viscous) liquid.
    5. Have an adult remove the bowl of chocolate from the hot saucepan and place it on the table or bench.
    6. Use the paintbrush to paint a layer of chocolate on the underside (the veiny side) of the leaves. Allow to cool (chocolate side up) and set. You may want to speed up this process in the fridge. Carefully peel away the real leaves to reveal your gorgeous new solid chocolate leaves.

    Why is it so?

    This is an interesting and unique approach to teaching about the changing states of matter. Instead of using water as the model, you use the very engaging (and yummy) chocolate. Students will watch solid chocolate change to a liquid with the application of heat. They will then see the chocolate change back into the solid state when it cools down. Use this activity as a springboard to talk about the molecular arrangement of solids, liquids and gases and how temperature changes affect the molecule movements.

    Read more »
  9. Glowing Water

    Glowing Water

    Glowing Water

    Make water glow eerily under a black light using the fluorescent dye found in highlighters. Glowing water can create some exciting special effects when used in fountains, or use it to transfer glow to bubbles, ice and slime.

    Suitable for kids aged 8 + with parental supervision

    CAUTIONThis science activity involves the use of a sharp knife to cut open a highlighter pen and the ink-soaked felt inside the highlighter. This must only be done by an adult.

    You Need:
    • Yellow highlighter felt pen
    • UV light, or black light
    • Gloves
    • Clear glass or container
    • Water
    What to do:
    1. Prise off the back of a highlighter pen, or if this is not possible, have an adult carefully cut the pen in half with a sharp knife.
    2. Pour some tap water into the glass or container.
    3. Wearing the gloves, pull out the ink-soaked felt that is inside the cut pen. Although nontoxic, the gloves will protect your fingers from being stained with the fluorescent dye.
    4. Soak the felt in the container with water for an hour or so. With the gloves on, squeeze the felt until almost all the ink has been transferred to the water.
    5. Turn on the black light and watch your water glow an eerie green.
    6. Use the water to transfer glow to any water based experiments or activities, like making slime, ice or bubbles. Tonic water also glows under UV light, so is great to use in edible glow experiments, like making glowing jelly.

    Why is it so?

    Tonic water and highlighters glow under black light because they contain fluorescent chemicals. These chemicals absorb light and then release it back. In this case they absorb highly energetic invisible UV light and release less energetic but visible light. The water is transparent so it is easy to colour with these glowing chemicals. The glowing water can be reused again and again and will never lose its glow.

    Read more »
  10. Elephant Toothpaste

    Elephant Toothpaste

    This COOL chemical reaction spews froth and foam everywhere. Just like a gigantic tube of toothpaste fit for an elephant.

    Suitable for kids aged 5+ with parental supervision.

    You Need:
    • An empty soft drink bottle (600mL size works best)
    • cup of 6% hydrogen peroxide solution (purchased from a hairdresser/beauty supply store or chemist)
    • Squirt of dishwashing liquid
    • 4 drops of food colouring
    • 1 teaspoon of dry bakers yeast dissolved in approximately 2 tablespoons of warm/hot water
    • Funnel
    • Safety goggles
    • Lab smock (optional)
    • Tray or foil cake tin to contain mess (optional)
    NOTEThe best part of this chemical reaction is that it makes a BIG mess. We have listed safety goggles, smock, and trays in the equipment section to contain the foaming mess. Avoid getting hydrogen peroxide on the skin and follow all instructions on the container.
    What to do:
    1. Put on your smock and safety goggles.
    2. Set out all the chemicals needed for this chemical reaction in front of you tin or tray to contain mess (optional), empty plastic bottle, dishwashing liquid, food colouring, peroxide and dissolved yeast. An organised scientist is a good scientist 
    3. Stand the bottle in the tray if you are using one. Using the funnel, pour the hydrogen peroxide into the bottle and 4 drops of food colouring.
    4. Then add a squirt of detergent to the bottle.
    5. Now for the fun bit! Pour in the yeast mixture and quickly remove the funnel. Wow! Feel the bottle. What has changed during the chemical reaction? The warm foam is safe to play with (its just soap, water and oxygen bubbles).

    Why is it so?

    Look at that oozing luscious toothpaste foam. What a wonderful chemical reaction! The chemical symbol for hydrogen peroxide is very similar to water except it has 2 oxygen atoms instead of 1. Hydrogen peroxide molecules are very unstable and naturally breakdown into water and oxygen gas. A small amount of heat is also released as it is an exothermic reaction. Yeast is the catalyst in this reaction, and makes the peroxide molecule release its oxygen atom faster. All the fix and foam is caused by the quickly released oxygen gas. The foam is safe to play with - it just contains oxygen bubbles, soap and water. Enjoy!

    Read more »
Page